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A newly implemented two-determinant coupled-cluster method including single and double
excitation operators (TD-CCSD) is applied to calculations of spectroscopic constants of alkali
metal diatomics. The equilibrium bond length, harmonic vibrational frequency, anharmo-
nicity, the dissociation energy and excitation energies are derived from the potential curves
calculated for the ground state X1Σg

+ and the two singlet mono-excited states, A1Σu
+ and B1Πu

of Na2 as well as for the ground X1Σ+ and the singlet excited A1Σ+ and B1Π states of the
heteronuclear NaLi, NaK, and NaRb molecules. Spectroscopic constants and excitation ener-
gies agree reasonably well with experiment. Our results demonstrate that the relatively sim-
ple CCSD method for the excited states represented by two-reference determinants is a via-
ble technique. The computer time needed for an excited singlet state is practically identical
to the time which a standard single-determinant-based CCSD calculation takes.
Keywords: Multireference coupled-cluster calculations; Incomplete active space; Complete
active space; Potential energy curves; Singlet excited states; Na2, NaLi, NaK, and NaRb;
Ab initio calculations; TD-CCSD.

During the last four decades the coupled-cluster (CC) theory1 has developed
into one of the most powerful methods in electronic structure theory. The
theoretical background of the CC theory has been discussed in excellent re-
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views2–6. While calculations on closed-shell systems can now be performed
routinely, description of open-shell systems are plagued by several compli-
cations. For high-spin systems, the appropriate generalization of the
closed-shell methods can be used7,8, but issues like spin-contamination or
symmetry breaking need to be considered. Low-spin open-shell systems,
however, such as open-shell singlet states, are more challenging since the
zeroth-order description of these states requires more than one determinant
and the standard CC approaches based on a single determinant reference
cannot therefore be used. These systems can be treated using, e.g., the uni-
tary group coupled-cluster approach (UGA CC) developed by Li and
Paldus9. Although several other potential solutions to this problem have
been suggested in the literature, we still do not have a standard, widely ac-
cepted method to treat open-shell singlet states.

In the present paper, one of the methods developed for this purpose, the
so-called two-determinant CC (TD-CC) method10–12 which is based on the
Hilbert-space formulation2,13 of the multireference CC problem is applied.
The principal aim of this study is to accumulate information on the appli-
cability of the method and particularly on its performance in the so-called
incomplete active space (IAS) situation. For this purpose we calculate here
the spectroscopic properties for the ground state and selected low-lying sin-
glet excited states of some alkali metal diatomic molecules, Na2, NaLi, NaK,
and NaRb, as very suitable test cases for our method. In the last decades al-
kali diatomics have been a focus of intensive experimental studies and ab
initio calculations of the adiabatic potential curves for both ground and ex-
cited electronic states. From the theoretical point of view, special attention
has been paid to the determination of highly accurate ground state poten-
tials and properties over a wide range of internuclear separations in order to
be able to adequately model the photodissociation spectroscopy of cold and
ultracold alkali atom containing molecules and other laser cooling experi-
ments. The ground state properties, the X1Σ g

+ state for Na2 and the X1Σ+

states for heteronuclear molecules, are thus well known both experimen-
tally and theoretically. A comprehensive summary of earlier work on the
Na2 ground state is given in ref.14 and corresponding references to more re-
cent studies can be found for Na2

15, for NaK 16 and for NaRb 17. Less infor-
mation, experimental and theoretical, however, is available for the excited
states, particularly for the excited singlet states which are of main interest
here, the A1Σ u

+ and B1Πu states of Na2 and the A1Σ+ and B1Π states of the
NaLi, NaK, and NaRb molecules. Particularly interesting in this context are
the A1Σ+ states of NaLi, NaK, and NaRb. Calculations of this state for the
heteronuclear molecules appears to be more difficult compared with the
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corresponding A1Σ u
+ state of Na2. Due to the reduced symmetry the σ

orbitals, which are the equivalents of the σg and σu orbitals in Na2, belong
to the same symmetry in NaMe, which makes the construction of the com-
plete active space more difficult. Potential energy curves have previously
been computed in the framework of pseudopotential or model potential
methods for, e.g., 58 electronic states of NaK by Magnier and Millie18. A
combined experimental and theoretical investigation of NaRb has been pre-
sented by Tamanis et al.19 These authors used relativistic pseudopotentials
diagonalizing the state-selective effective Hamiltonian for the valence
two-electron subsystem and the second-order many-body multipartitioning
perturbation theory for calculations of excited states of NaRb. A highly cor-
related technique related to the present work, namely the Fock space
open-shell CC method, was applied by Kaldor and Ilyabaev20 to excited
states of Na2 and K2. Chattopadhyay et al. have applied the state-specific
multireference CC method in a study21 of potential energy curves of Na2
and some other molecules. Other related theoretical work has been pub-
lished by Malrieu, Adamowicz et al.22,23

Rather than aiming in the present calculations to reach the benchmark
accuracy for the spectroscopic constants, the paper demonstrates the ability
of our new TD-CC approach for the complete and incomplete active space
to describe the main characteristics of the excited singlet states with reason-
able accuracy. The satisfactory agreement of the theoretical results obtained
using this approach with experiment justifies further developments of the
method.

OVERVIEW OF THE THEORY

In this paper singlet states of two different kinds have been investigated.
Ground states of the studied molecules, Na2, NaLi, NaK, and NaRb, are typi-
cally dominated by a single closed-shell determinant, at least around the
equilibrium geometry. These systems can be treated by standard single-
determinant-based CC (or other) techniques, which are well established2–6.

Excited A1Σ and B1Π are schematically created by excitation of one elec-
tron from the doubly occupied σ HOMO orbital (denoted by m) to one of
the low-lying unoccupied orbitals n. For the systems studied in this paper,
this orbital is either the σ LUMO or the lowest orbital with the π symmetry.
For the singlet coupling of the two open-shell electrons, two low-spin (Sz = 0)
excited determinants must be considered:

| | , , | | , , .Φ Φp qm n m n〉 = … 〉 〉 = … 〉α β β α (1)
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However, neither of these two determinants can be used as a proper zeroth-
order wave function. A proper singlet combination which is an eigen-
function of the S2 operator can be formed as follows:

| (| | ) .Φ Φ Φref 〉 = 〉 − 〉1

2
p q (2)

This configuration state function (CSF) is the dominant component of the
wave functions of the studied excited states. Molecules where a single CSF
of this kind is dominating still belong to the single-reference systems in the
sense that the ratio of |Φp〉 and |Φq〉 is fixed. Standard CC theory, however,
is essentially based on a single determinant representation of the reference
function and is thus not directly applicable in this case. Therefore, CC
methods developed for the multireference situation need to be exploited
here.

We have developed a new CCSD code applicable for such cases, i.e. for
the two-determinant reference. The method is based on the multireference
CC formalism, suggested by Jeziorski and Monkhorst13. Their formulation,
which represents the background for the state-universal or the Hilbert space
(HS) MR-CC method, uses the technique of effective Hamiltonians (Heff).
Working equations and the computer code have been presented by
Kucharski and Bartlett24, while the application of this method for the
open-shell singlet case has been suggested by Balkova and Bartlett10. Full
implementation of this so called two-determinant CC (TD-CC) method has
been reported by Szalay and Bartlett11.

Here we present only some basic ideas of the effective Hamiltonian for-
malism. For more details, the reader is referred to instructive overviews, see,
e.g., ref.2 or ref.3 We choose a group of reference determinants |Φj〉 , j = 1, M,
which span the model space M0. Now we are looking for such an operator,
Heff, the spectrum of which on M0

H Ej j j
eff |

~
|
~Φ Φ〉 = 〉 (3)

is identical to a required part of the spectrum of exact Hamiltonian. Eigen-
vectors |

~Φ j 〉 are linear combinations of |Φj〉 , j = 1, M. Eigenvalues Ej corre-
spond to a group of exact eigenfunctions Ψj,

H Ej j j| | .Ψ Ψ〉 = 〉 (4)
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Function |Ψj〉 can be obtained from |
~Φ j 〉 by introducing a wave operator

U 25. The inverse process can be realized using the operator P projecting
onto the model space M0:

U Pj j j j|
~

| |
~

| .Φ Ψ Φ Ψ〉 = 〉 〉 = 〉 (5)

U is required to act only on M0, so that U = UP. It is also convenient to in-
troduce intermediate normalization, which guarantees that all interactions
within the model space are completely included within the diagonalization
of the Heff matrix

PU = P or 〈 〉 =Φ Ψi j ij|
~ δ (6)

where |
~Ψ j 〉 = U|Φj〉 . Using the above relations, one can find that the effec-

tive Hamiltonian can be expressed as

Heff = PHU = PHUP . (7)

To determine the wave operator U, it is useful to introduce the Bloch
equation:

HU = UHU HU = UHeff . (8)

Jeziorski and Monkhorst13 introduced the wave operator in the following
form:

U T
j j

j

j

= 〉 〈∑e | | .Φ Φ (9)

Inserting this form of the wave operator into the Bloch equation they ob-
tained equations which can be used to solve for the amplitudes Tp:

〈 〉 = 〈−

≠
∑Φ Φ Φij

ab T T
p qp

q p
ij
abp H H p

p p

..
..

..
..( )| ( )|e e eff e e− 〉T T

q

p q

Φ (10)
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with

H Hqp q
T T

p

p peff e e= 〈 〉−Φ Φ| . (11)

At this point it is necessary do discuss the properties of the determinants
which span the model space. The orbitals forming the determinants can be
classified as inactive orbitals k, i.e. those that are doubly occupied in all de-
terminants |Φj〉 , j = 1, M, and active orbitals l, which are occupied (either
doubly or singly) by remaining N – 2k active electrons only in some of the
determinants. If the model space is spanned by all determinants that can be
constructed by all possible distributions of active electrons among active
orbitals considering the desired space and spin symmetry, we have a com-
plete active space (CAS). If we take only some of them, we consider an in-
complete active space (IAS).

In the MR-CC formalism for the CAS case, those excitation operators that
are labeled exclusively by indices from active orbitals are excluded from the
cluster operators Tp since all determinants that can be obtained via such
excitations from an arbitrary |Φj〉 ∈ M0 are already included in M0. Thus,
intermediate normalization is fulfilled automatically and the HS formalism
is quite straightforward. The proof of connectedness for this case has been
already given in the original work by Jeziorski and Monkhorst13. Later
Kucharski and Bartlett24 reported a complete formulation of the corre-
sponding HS MR-CCSD method based on diagrammatic technique. The
model space M0 considered in this work included determinants up to sextu-
ple excitations24. To deal with IAS is much more complicated. The main
problem is that some excitation operators labeled purely by active indices
must be included in the cluster operator Tp since they create determinants
which belong to CAS, but are not included in the model space. In what fol-
lows we denote these operators as actTj. Obviously,

〈 〉 = ∈Φ Φi
j

j ijT i j M| ,δ 0 (12)

is still valid, but (unlike CI) in complete exponential expansion

〈 〉 ≠ ∈Φ Φi
T

j ij

j

i j M| ,e δ 0 (13)
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because some of the products may generate other determinants from model
space

act1Tj act2Tj| | .Φ Φj ic〉 = 〉 (14)

Thus, without introducing additional conditions, the intermediate nor-
malization may be broken and the whole concept may become problem-
atic. Meissner et al.26 have shown that for special types of IAS, namely
when any excitation operator is uniquely classified as a external or internal
operator (i.e. producing determinants ∈ M0 or ∈ M 0

⊥ with respect to all de-
terminants in the reference space), size extensivity can be saved by intro-
ducing alternative normalization conditions. Although the two-
determinant IAS belongs to this type and the concept could be used, this
technology seems to be too complex to be coded effectively. For the sake of
completeness, we note that the method has been extended to a general
type of IAS 27. A significant invention in solving HS MR-CC for an incom-
plete active reference space comes finally from the laboratory of Paldus and
coworkers28,29. They exploit the concept of the so-called C-conditions, i.e.
introducing CI-like coefficients Ci, which make it possible to rewrite

~Ψi for-
mally in the linear form

|
~

| | |
~

| .Ψ Φ Φ Φ Φi i
T

i i
i

iU C
i

〉 = 〉 = 〉 = 〉 + 〉e (15)

Obviously,

~
C Ti i

1 1= (16)

~
C T T Ti i i i

2 2 1 1

1
2

= + ⋅ (17)

etc., where the subscript in Tn
i indicates the level of the excitation operator.

This idea goes back to equations (68)–(73) of ref.13 Within this framework
the solution of the problem can be formulated in a very clear and elegant
way: instead of requiring ( )t n

i
µ = 0 (the small letter denotes the value of am-

plitude corresponding to a particular excitation µ of a given type) when
( ) | ( ) |T tn

i
i n

i
jµ µΦ Φ〉 = 〉 generates another determinant from reference space
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|Φj〉 , we will require (~ )cn
i

µ = 0. Thus, the values of external excitation ampli-
tudes will be determined using Bloch equation (10), and internal ampli-
tudes via C-conditions, given by Eqs (16) and (17). Evidently, the amplitude
of any monoexcitation producing a reference function arising from another
reference function must vanish automatically. However, starting from in-
ternal biexcitations, their amplitudes may be of nonzero magnitude (in
contrast to CAS-like solutions) to eliminate the undesired contributions
produced by products of lower rank excitations operators actT n

i
< (like a case,

presented in Eq. (14)). Now it becomes obvious that C-conditions represent a
simple and powerful tool to preserve intermediate normalization and thus
main features of the original HS MR-CC concept. In particular, for two elec-
trons, the C-conditions-based solution automatically leads to FCI.

Let us shortly recall some important steps needed for the numerical
implementation of TD-CC and C-conditions. Balková and Bartlett10 pre-
sented the equations and implementation of the code, in which the
renormalization term (i.e. terms on the right hand-side of Eq. (10)) is lim-
ited to contributions, which are linear or at most quadratic in t. Their pro-
gram allows to treat both CAS and IAS model spaces. This code was used in
several calculations, including the study of first few excited states of LiH 12,
which is isoelectronic with our molecules in the valence space.

Szalay and Bartlett11 implemented a code where the renormalization term
was treated completely, i.e. it contains also cubic and quartic terms. These
terms are usually not large in comparison with (mainly) linear contribu-
tions, but they may play an important role in the orbital relaxation. The
choice of reference orbitals for the TD-CC method is more important than
in standard single-determinant-based cases. In some cases we are using
orbitals, which are not optimized specifically for a selected TD CSF (e.g., we
use ground-state closed-shell orbitals; more details will be discussed later).
Thus, the presence of complete orbital relaxation, which is realized via exp (T1)
is particularly important. The code11 is limited to CAS model spaces.

C-conditions for incomplete MS (or a general MS) were successfully imple-
mented into the Brillouin–Wigner (BW) MR CC method by Pittner, Li and
Paldus29. Although the BW CC approach seems to be rather different from
the RS one, Pittner30 showed that these two methods can be treated within
the same framework introducing an arbitrary denominator shift in BW CC.
This allows to obtain RS MRCC results using the MR BWCC code. Actually
this helped us in testing of our code. The BW treatment of MR CC is suit-
able especially in the presence of intruder states, but the method is not ex-
actly size-consistent. However, innovations introduced recently30,31 make it
possible to reduce the magnitude of the size inconsistency significantly.
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COMPUTATIONAL DETAILS

The computer program used in this work was written by one of us (P. N.). It
is implemented in the MOLCAS 5.2 computer program32. The program uses
essentially the same methodology as the previous one11 and is its extension
also for incomplete model space using the C-conditions concept. Specifically
for our TD-CC approach, it is sufficient to create a set of excitation ampli-
tudes only for one of the determinants since amplitudes for the second de-
terminant are one to one related via complete spin-flip relations10. Thus, in
contrast to general MR implementations, the numerical requirements are
comparable with a standard single-determinant-based CCSD method, be-
cause the evaluation of the renormalization term needs marginal computa-
tional effort. Our program allows to use arbitrary molecular orbitals to form
both determinants. This feature is similar to the QRHF method of Rittby
and Bartlett8. The details will be presented elsewhere33.

We used both nonrelativistic Pol 34 and relativistically contracted NpPol
basis sets35. Since rubidium is already a relatively heavy element, all calcula-
tions were performed considering scalar relativistic effects within the
no-pair Douglas–Kroll–Hess quasirelativistic approximation36. The main
portion of results were obtained using more extended basis sets of the
NpHyPol type37. These bases were created from corresponding NpPol basis
sets decontracting the basis set function with the lowest exponents of the d
subset into two individual primitive functions and introducing the f subset
with the same exponents. However, these bases were not available for our
elements until recently. Actually, only nonrelativistic HyPol basis sets for Li
and Na were available37. Thus, we have produced all needed NpHyPol basis
sets in an analogous way. Both NpPol and NpHyPol basis sets are desig-
nated for the treatment of electric properties. The usefulness of NpPol basis
sets in calculations of intermetallic diatomics and their bonding properties
was demonstrated in previous papers, see, e.g.38,39. These basis sets contain
sufficiently diffuse basis functions and are thus suitable for describing rela-
tively weak bonds. The disadvantage is that the basis set superposition error
(BSSE)40 is relatively large.

In all correlated calculations inner shell orbitals were frozen. More specif-
ically, orbitals corresponding to 1s electrons of the Na element and the
1s2s2p and the 1s2s2p3s3p3d electrons of the K and Rb elements, respec-
tively, were left uncorrelated.

The selection of the reference orbitals applicable to subsequent CC calcu-
lations is unique for the closed-shell and the high-spin open-shell systems.
For the ground state of Na2 (X1Σ g

+ ) and NaMe molecules (X1Σ), with Me =
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Li, K, or Rb, it is possible to create a single-determinant reference which was
actually used as a reference for all CCSD and CCSD(T) calculations.

The selection of reference orbitals for more general open-shell systems,
particularly the excited singlet states, needs special attention. The most natu-
ral selection would be using the orbitals that represent the state under con-
sideration, what in our case means orbitals, corresponding to the references
of the type defined by Eq. (2). If m and n orbitals (from Eq. (1)) belong to
different irreducible representations, reference function (2) represents CAS.
This is the case of A1Σu and B1Πu states of Na2. Considering the computa-
tional D2h symmetry, the inactive/active orbitals in particular irreducible
representations were (31103110/10001000) for the A1Σu state and
(31103110/11000000) for the B1Πu states, respectively, with two active elec-
trons. This reference will be denoted as “A” for the A1Σu state and as “B” for
the B1Πu state. The above mentioned situation is also the case for the B1Π
states of heteronuclear NaMe molecules, with corresponding active space of
the (1100) type within the C2v symmetry (this reference will be also de-
noted as “B”).

For the A1Σ state of heteronuclear molecules, the absence of the center of
symmetry merges our m and n orbitals (σg and σu in a homonuclear mole-
cule) into the same irreducible representation. Consequently, our CSF,
given by Eq. (2), represents IAS. In general it should be possible to produce
orbitals, corresponding to this reference (which would be the most natural
choice of orbitals for subsequent TD-CC calculations). However, our imple-
mentation is based on the RASSCF code from MOLCAS as an orbital genera-
tor, which in the present version does not allow to treat this type of the ref-
erence separately. Two additional (mostly undesired10) doubly occupied
configurations m2 and n2, which supplement the model space to the (2000)
CAS (with two active electrons) are, unintentionally, included as well. Such
CAS reference would be adequate around the minima. At large distances,
however, the weight of undesired configurations increases, which leads to
deterioration of the long-range part of the potential energy curves. For this
reason we did not use the CAS reference yet.

Attempting to trace the effect of the choice of different reference orbitals,
we have calculated potential energy curves for both excited singlet states of
Na2 and the B1Π excited state of NaLi, NaK, and NaRb using the ground
state reference orbitals (denoted as “X” reference orbitals) and the triplet
a3Σ state reference orbitals (denoted as “a” reference orbitals) along with
their genuine reference orbitals created from the two-determinant complete
space.
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The active space for CASSCF/CASPT2 calculations was (21102110) and
(4220) for Na2 and NaMe molecules, respectively. It comprises the highest
doubly occupied σ orbital and additional three σ orbitals created from the
valence ns and npz orbitals of the metal element. Remaining orbitals in the
active space are created from npx and npy orbitals. Such active space allows
proper dissociation to the products over the whole potential energy curve.
Two electrons were active in CASSCF, which means that essentially no
dynamic electron correlation is included at this level of sophistication. An
essential part of the dynamic electron correlation was considered in the
CASPT2 step. Results for the A state were obtained as the 2nd root for to-
tally symmetric irreducible representation in all cases except for Na2, where
X and A states have different symmetry.

All potential energy curves and all spectroscopic constants were calcu-
lated considering BSSE.

Dissociation Products and the BSSE Correction

Dissociation products of the Na2 X1Σ g
+ state are two Na atoms in the 2S

state. Analogously, dissociation products for the X1Σ states of heteronuclear
molecules NaMe (with Me = Li, K or Rb) are the Na 2S and the Me 2S states,
respectively. Dissociation products for the A1Σu and B1Πu states of Na2 and
the A1Σ and B1Π states of NaMe are Na 2S and Me 2P states. Other dissocia-
tion channels, which would represent products like Na 2P and Me 2S, were
not studied in detail in this work.

We note that our methods are not true multireference methods and are,
in general, not aimed at calculation of the potential energy curves over the
whole energy surface. Concerning calculation of the dissociation energy,
one can, of course, calculate the energy around the minimum of the poten-
tial energy curve for our molecules in the state of interest and to use the
standard CCSD or the CCSD(T) method with the restricted open-shell
Hartree–Fock reference41–44 for calculating the dissociation products, i.e. en-
ergies of a Me element in the corresponding doublet state.

We need to address a specific problem concerning BSSE in relation to the
dissociation products. Namely, we should realize that the Me 2P dissocia-
tion product can be represented by a singly occupied orbital with electron
occupying either npz or npx (npy) orbital, i.e. the orbital oriented in the di-
rection of the principal axis of the NaMe molecule or perpendicularly. Both
are energetically degenerate in standard atomic calculations. However, this
is not the case when calculating BSSE correction due to the presence of the
ghost basis set in one of the axes (say z). Thus, in evaluation of BSSE we
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need to use results with npz (let us assign it as 2Pz) as the singly occupied or-
bital in the dissociation process of the A state, while the npx or npy orbital
(2Px) is needed for the dissociation of B state. Unfortunately, our CC code
does not enable us to calculate the 2Pz case, because it belongs to the same
symmetry as 2S, while there are no problems with 2Px. However, our numer-
ical tests show, that the distance (R) dependence of BSSE is almost identical
for the 2S and 2Px states (at least from the point of view of the magnitude of
errors in final bonding energies). Since these two states are physically much
more different than are 2Px and 2Pz states, we can estimate that the R de-
pendence of 2Pz will be also very similar. Thus, we use 2Px energies for both
cases.

RESULTS AND DISCUSSION

A comparison with experiment is a necessary requirement for assessment of
correctness of newly developed concepts for calculating molecular proper-
ties. In this respect the potential energy function determined over wide
ranges of internuclear distances plays an essential role. The potential en-
ergy curve of diatomics is a fundamental molecular characteristic accumu-
lating much information about basic properties such as the equilibrium
internuclear distance, stability of the molecule, and its dissociation prod-
ucts. In addition, each stable molecular electronic state possesses a system
of vibrational and rotational energy levels on its own and transitions be-
tween these states are responsible for the rovibronic spectra of the mole-
cule. These spectra are largely determined by the shapes and mutual ar-
rangement of the potential energy curves of the combining electronic
states.

We start the discussion here with summarizing the results calculated for
the dissociation and excitation energies of Na2, NaLi, NaK, and NaRb.
Along with these molecular quantities we also present the relevant lowest
alkali atomic excitation energies for which accurate experimental data are
available. A comparison of the theoretical and experimental atomic excita-
tion energies provides a direct check of the performance of NpPol and
NpHyPol basis sets. These properties are calculated using both the open-
shell ROHF CCSD and CCSD(T) methods41–46 and they are listed here together
with the corresponding results obtained from CASSCF and CASPT2 calcula-
tions. After evaluating these basic energetics a discussion of the results ob-
tained for the equilibrium bond distances, Re, the harmonic vibrational fre-
quencies, ωe, and anharmonicities, ωexe, follows. In this discussion the
spectroscopic constants of the Na2 molecule in its ground and lowest ex-
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cited singlet states are considered separately from those of the hetero-
nuclear NaLi, NaK, and NaRb molecules which are characterized by an in-
complete active space.

Dissociation and Excitation Energies of Na2, NaLi, NaK, and NaRb

Dissociation energies of Na2, NaLi, NaK, and NaRb derived from the CCSD
and CCSD(T) potential energy calculations are compared in Table I with the
corresponding CASSCF and CASPT2 results and with experiment if avail-
able. The ground state dissociation energies at the CCSD(T) and CASPT2
levels agree with experimental data usually within 0.01–0.04 eV. The same
uncertainty margin actually applies to experimental data collected from dif-
ferent sources. A larger difference between theory and experiment is found
for the De of NaRb, up to 0.04–0.08 eV, depending on the experimental
value used for comparison whereas the CCSD(T) and CASPT2 results in this
case are in excellent agreement with each other. The contribution from tri-
ple excitations in the CCSD(T) results to the ground state dissociation ener-
gies is quite small for NaLi with 0.018 eV, increasing to 0.045 eV for NaRb.
Inclusion of triples improves the agreement between theoretical CC data
and experiment. On the other hand, by taking the uncertainty of experi-
mental dissociation energies into account, this improvement is of the same
order of magnitude. Experimental dissociation energies for the singlet ex-
cited A and B states are only available for Na2 and NaK and for the B state
of NaRb. The agreement between our theoretical CCSD and CASPT2 dissoci-
ation energies and the experimental values for these states was found to be
comparable with that for the ground states. For NaLi, apart from the
ground state, experimental results are not available for comparison. Previ-
ous theoretical De values60, however, obtained on the configuration interac-
tion (CI) level of theory are in relatively good agreement with the present
results.

In the upper part of Table II results for the excitation energies 2S – 2P of
Li, Na, K, and Rb are summarized. A reasonably accurate representation of
these quantities on the different theory levels is essential since the atomic
2S and 2P states are the dissociation products on the potential energy
curves. In general, CCSD(T) and CASPT2 values agree with J-weighted
average experimental values very well. Surprisingly, the largest difference be-
tween theoretical and experimental excitation energy occurs for Li (60 cm–1).
Electron correlation contributions are found to be important, they increase
from Li (–57 cm–1) to Rb (1825 cm–1) according to the CCSD(T) results. The
contribution of triples is small, changing only rather little for different al-
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TABLE I
Dissociation energies De (eV) of Na2, NaLi, NaK, and NaRb

State Ref.a CCSD CCSD(T) CASSCFb CASPT2b Experiment

Na2

X1Σg
+ X 0.687 0.718 0.702 0.726 0.73c, 0.746d

A1Σu
+ A 1.026 – 0.986 1.015 1.030d

X 1.009 –

a 0.993 –

B1Πu B 0.300 – 0.168 0.287 0.331d

X 0.313 –

NaLi

X1Σ+ X 0.832 0.850 0.843 0.853 0.876e, (0.82)f

A1Σ+ X 0.942 – 0.989 0.949 (0.95)f

a 0.935 –

B1Π B 0.206 – 0.127 0.194 (0.12)f

NaK

X1Σ+ X 0.568 0.608 0.624 0.6140 0.621c, 0.653g,
0.654h, 0.644i

A1Σ+ X 0.743 – 0.692 0.743 0.759i

a 0.717 –

B1Π B 0.133 – 0.080 0.124 0.164j

NaRb

X1Σ+ X 0.535 0.579 0.605 0.575 0.66k, 0.624l

A1Σ+ X 0.730 – 0.671 0.734 –

a 0.744 –

B1Π B 0.127 – 0.075 0.119 0.164m

a X, A, B and a mean that reference orbitals for CC calculations are taken from the X1Σg
+ or

X1Σ+, the A1Σu
+ or A1Σ+, the B1Πu or B1Π, or from the triplet a3Σu

+ or a3Σ+ single CSF (one or
two determinant reference) SCF calculations for the homo- or heteronuclear species, respec-
tively. b For CASSCF/CASPT2, only results using the (21102110) and the (4220) active space
partitionings for the homo- or heteronuclear species, respectively, with 2 active electrons are
presented (see text). c Experimental values from ref.54 d From ref.55 e From ref.59 f Theoretical
values in parentheses from ref.60 g From ref.62 h From ref.16 i From ref.63 j From ref.52 k From
ref.65 l From ref.17 m From ref.53
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TABLE II
Excitation energies Te (cm–1) of atoms Li, Na, K, and Rb and molecules Na2, NaLi, NaK, and
NaRb

Process/Referencea CCSD CCSD(T)b CASSCF CASPT2 Experimentc,d

Li 2S – 2P 14844 14844 14901 14869 14904

Na 2S – 2P 16942 16975 15987 16877 16956, 16973

K 2S – 2P 13020 13058 11438 13014 12985, 13043

Rb 2S – 2P 12598 12654 10827 12683 12579, 12817

Na2/Reference

X1Σg
+ – A1Σu

+/A 14211 14494 13696 14550 14680

/X 14346 14629

/a 14472 14755

X1Σg
+ – B1Πu/B 20068 20351 20294 20147 20319

NaLi/Reference

X1Σ+ – A1Σ+/X 13957 14101 13726 14095 14214

/a 14008 14152

X1Σ+ – B1Π/B 19887 20031 20676 20183 20244

NaK/Reference

X1Σ+ – A1Σ+/X 11610 11970 10888 11973 12137

/a 11818 12178

X1Σ+ – B1Π/B 16525 16855 15824 16966 16993

NaRb/Reference

X1Σ+ – A1Σ+/X 11023 11439 10293 11399 11702

/a 10910 11324

X1Σ+ – B1Π/B 15883 16299 15102 16360 16528

a For reference orbitals for the excited state calculations, see footnote a in Table I. b The ef-
fect of triples for molecular excited states is estimated (see text). c Atomic experimental data
from NIST (ref.54) for states 2P1/2 and 2P3/2, respectively. Weighted average of J = 1/2 and J =
3/2 experimental values is 16962, 13004, and 12658 cm–1 for Na, K, and Rb, respectively.
d Molecular experimental data for excitations to the A and B states are taken from: refs47,48

for Na2; refs49,50 for NaLi; refs51,52 for NaK; refs19,53 for NaRb.



kali atoms (33–56 cm–1). But it is difficult to generalize this for the diatomic
excitation processes discussed in the following. We are presently unable to
include the triple excitation operator for excited singlet states in our new
two-determinant CC method. The relatively small effect of triples obtained
here for the atomic excitation energies may be considered to support the
expectation that triples should also not be too critical for molecular species
as well.

For the diatomic X–A and X–B excitation processes, excitation energies
obtained here on the CC level as well as the CASPT2 results generally tend
to be too small compared with available experimental values. Estimated
contributions from triples applied to the CCSD results slightly improve the
agreement. For both excitation processes, discrepancies between theoreti-
cal, either CC level or CASPT2, and experimental excitation energies are ap-
proximately in the range of 100–300 cm–1, i.e. between 1 and 2%, with the
trend to increase from NaLi to NaRb. The only exception is X–B in Na2 with
CCSD(T) and CASPT2 being slightly larger whereas CCSD is still too small
by about 250 cm–1. A major source of the remaining differences between
the theoretical results and their experimental analogues has to be attributed
to deficiencies of the not explicitly optimized basis sets used in the present
calculations. In addition, it has to be kept in mind that the estimated
CCSD(T) results are only approximate. They are obtained using CCSD(T)
values for the ground state De’s and the atomic excitation energies together
with the CCSD values for the De’s of the respective excited states. Apart
from the existing numerical discrepancies, the calculations on different
theory levels are able to reproduce the correct trends among the various ex-
citation energies. This proves that the new concept used in the CCSD calcu-
lations is capable of describing the situation in the singlet excited elec-
tronic states of the diatomics correctly. Concerning the CCSD calculations
for the X–A excitation in the heteronuclear diatomics, the results are influ-
enced by the selection of the reference and corresponding orbital space for
the A1Σ+ states. Excitation energies can differ by up to 208 cm–1 (NaK) when
using orbitals either from the ground state (X) or from the triplet a-state.
The effect on the X–A excitation energy determination using the new CCSD
approach is thus not negligible and no preference can be safely derived
from our calculations. On the other hand, the present CCSD results for the
X–B excitation differ from experiment by a similar margin although for the
B1Π states of the heteronuclear diatomics a complete active space can be
created and the selection of the reference is thus unique.
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Potential Energy Curves and Spectroscopic Constants of Na2

Potential curves calculated for the X1Σ g
+ ground electronic state of Na2 and

the two low-lying singlet excited states, A1Σu and B1Πu, are displayed in
Fig. 1 for internuclear distances R reaching up to 10 Å. The potential energy
curves for all three states are plotted relative to the energy which corre-
sponds to the dissociation limit of the X1Σ g

+ ground state.
The ground state potentials in the figure are obtained from calculations

at three different theory levels. Of these the CASPT2 calculations utilizing
an (21102110) active space partitioning are able to describe the dissociation
into two Na (2S) atoms properly. The potential calculations on the coupled-
cluster level are affected by quasidegeneracy at large distances which is a
well known problem in calculations of the dissociation potentials of
closed-shell molecules represented by a single determinant reference. These
curves are therefore truncated at R = 7 Å where the CCSD amplitudes be-
come large. Comparison of the CCSD(T) and CCSD curves clearly shows the
contribution from triples to the ground state potential.

For the two low-lying singlet excited states of Na2, both the CASPT2 po-
tential curves in Fig. 1 converge to the dissociation limit corresponding to
the products Na(2S) + Na(2P). The energy gap between the dissociation
products of the X1Σ g

+ ground state and the dissociation products of both ex-
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FIG. 1
Na2 potential energy curves for the X1Σg

+ ground state and A1Σu
+ and B1Πu excited states. Sym-

bols for the reference functions in CC calculations are defined in the footnote of Table I (for
example, the symbol CCSD-BX means the curve for the B1Πu state utilizing the X reference
orbitals)



cited states corresponds thus to the 2S – 2P excitation energy of Na. The
quasidegeneracy problem for larger R values encountered for the ground
state occurs also for the excited states. The background behind the problem
here is that for the representation of the open-shell A1Σ u

+ and B1Πu states a
two-determinant reference is used in the present CCSD approach rather
than a true multideterminant reference. The proper description of the
whole dissociation potential would require at least a (11001100) active or-
bital partitioning scheme, which makes s and px orbitals available for both
atomic dissociation products (s(a) ± s(b) and px(a) ± px(b)). However, the
formulation of the CCSD approach used here to describe the singlet excited
states, is based on (10001000) and (11000000) partitioning schemes for
the A and B excited states, respectively. TD-CCSD with these references is
capable of representing the dynamical correlation in the minimum region
very well. At a distance of about 4.5 Å, however, the CCSD amplitudes in-
crease heavily and become unacceptable. Deterioration of the potential
curve by quasidegeneracy problems in this outer part can affect the reliabil-
ity of the anharmonicities derived from these calculations. Finally we note
that the CASPT2 curve of the B state shows a shallow maximum at about
6.9 Å with an energy of 360 cm–1 above the dissociation level. This is
caused by an avoided crossing of this state with the next higher state of the
same symmetry. These results agree perfectly with experimental observa-
tions of an energy hump in the potential of this state with HB = 379.3 cm–1 at
R = 6.8 Å 56 or HB = 377.7 cm–1 at R = 7.1 Å 57.

Basic spectroscopic constants Re, ωe, and ωexe derived from potential cal-
culations on the different theory levels are summarized in Table III for the
three electronic states of Na2 in comparison with experiment. The equilib-
rium bond distances are generally obtained too large, which is due to an
overcompensation of the BSSE effect using the Boys–Bernardi correction
procedure and it shows that the atomic basis sets used in the present calcu-
lations are not complete. Better agreement with experiment is obtained for
the harmonic vibrational frequencies on all three correlated theory levels.
In particular the new CCSD approach is doing rather well for the ground
and the two excited states with maximum deviations of about 1% and less.
The curvature of the potentials in the minimum region is thus described
rather accurately by this approach, which underlines the above statement
about the reliability of the two-determinant reference in this region.

Figure 2 directs attention to the influence of different reference orbitals
on the shapes and the qualities of the calculated potentials in the case of
the A1Σ u

+ state of Na2. A more detailed numerical information determining
the quality of the references is provided in Tables I–III. The shapes of the
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potential energy curves around the minimum are rather similar for the dif-
ferent references exploiting orbitals from the A1Σ u

+ state or from X1Σ g
+ or the

a3Σ u
+ states. This finding is to some extent reflected by the fact that the re-

sults for the basic spectroscopic constants listed in Table III do not differ
very much for different references. Larger is the influence of the reference
orbitals on the determination of the excitation energy of X–A in Table II
and on the dissociation energy in Table I especially when comparing the

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

CC Study of the Ground and Singlet Excited States 969

TABLE III
Equilibrium bond distance Re (Å), harmonic vibrational frequency ωe and anharmonicity
ωexe (cm–1) of the Na2 molecule in its ground state and the lowest excited singlet states

State Ref.a CCSD CCSD(T) CASSCF CASPT2 Experiment

Re

X1Σg
+ X 3.095 3.095 3.186 3.095 3.079b, 3.080c

A1Σu
+ A 3.677 – 3.757 3.672 3.638b, 3.635c

X 3.662 – – –

a 3.666 – – –

B1Πu B 3.424 – 3.606 3.460 3.423b, 3.413c

X 3.414 – – –

ωe

X1Σg
+ X 158.2 156.6 150.7 157.2 159.1b, 159.2c

A1Σu
+ A 115.0 – 111.9 115.1 117.3b,c

X 116.6 – – –

a 117.0 – – –

B1Πu B 125.5 – 112.3 120.4 124.1b, 124.4c

X 126.5 – – –

ωexe

X1Σg
+ X 0.64 0.69 0.71 0.72 0.725b

A1Σu
+ A 0.36 – 0.33 0.37 0.358b

X 0.36 – – –

a 0.36 – – –

B1Πu B 0.68 – 0.86 0.82 0.700b

X 0.67 – – –

a See footnote a in Table I. b Experimental data from NIST (ref.54). c Other experimental val-
ues from ref.55



genuine A-reference with the one taken from the triplet a-state. This obser-
vation may serve as a guidance for calculations of A state potentials and
possible choices of appropriate references for the heteronuclear diatomics
discussed below. The figure also demonstrates the effect of the BSSE correc-
tion on the A state potential curve. Without BSSE correction, the dissocia-
tion energy would be De = 1.135 eV. Finally, also included in Fig. 2 is the
CCSD curve obtained from calculations with the smaller NpPol basis set.
The curve has a slightly different shape and its minimum is shifted to a
larger R distance. The spectroscopic constants for the A1Σ u

+ state of Na2 ob-
tained from this potential are: De = 0.997 eV; Re = 3.728 Å; ωe = 110.6 cm–1.

Potential Energy Curves and Spectroscopic Constants of NaLi, NaK, and
NaRb

There is a basic difference in applying the TD-CCSD approach in potential
calculations for the heteronuclear diatomics compared with the homo-
nuclear Na2 due to the fact that the heteronuclear species have a lower sym-
metry. The first consequence is that for heteronuclear molecules we were
not able to construct a complete active space representation the excited sin-
glet A1Σ+ state. On the other hand, reduced symmetry in heteronuclear spe-
cies is favorable for a proper representing of the long-range part of the po-
tential energy curves for the singlet excited states, aside from purely techni-
cal problems in creating proper IAS reference for the A1Σ+ state when using
MOLCAS.
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FIG. 2
Na2 A1Σu

+ excited state potential energy curves



The electronic structure of the A1Σ+ singlet excited state in the hetero-
nuclear cases is characterized by two unpaired electrons localized in two σ
orbitals of the same symmetry representation whereas in the A state of Na2
the two electrons are distributed among the two singly occupied σg and the
σu orbitals belonging to different symmetry species. The orbital partitioning
([core]/2000) used in the heteronuclear TD-CCSD potential calculations for
the A state represents an incomplete active space (IAS) which requires a
more complicated theoretical handling.

Figure 3 (in analogy to Fig. 1) compares for NaK the potential energy curves
for the X1Σ+ ground state and the singlet excited A1Σ+ and B1Π states calcu-
lated at the coupled-cluster level with the corresponding CASPT2 curves.
Like for the Na2 ground state the effect of triples is shown in the CCSD(T)
potential. The potentials for NaK are representative for all the other
heteronuclear species considered here, the general features of the NaLi and
NaRb curves are similar. Due to quasidegeneracy problems, the CC poten-
tial curves for the ground and the first excited A state are truncated. For the
B1Π state the potential curve determined on the coupled-cluster level pro-
gresses close to the CASPT2 curve and behaves correctly up to the dissocia-
tion limit. The reference for the CCSD calculation arising from the (1100)
active space is thus adequate for the heteronuclear dissociation potential
calculations. This, however, does not guarantee smoothness in general. Like
in Na2, also for the B1Π state of NaLi an avoided crossing with the next
higher state of the same symmetry seems to occur where the higher state
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FIG. 3
NaK potential energy curves for the X1Σ ground state and A1Σ and B1Π excited states



after the avoided crossing dissociates to Na(2P) + Li(2S). Other than in Na2,
however, the crossing region is around R = 4.1 Å 60. In the present potential
calculations, in particular the curve obtained on the CASSCF level shows a
shoulder in this region indicating a state interaction taking place (Fig. 4).
Figure 3 also demonstrates the influence of different selections of reference
orbitals on the potential curves of the A1Σ+ state of NaK. Whereas in Na2
(Fig. 1) the curves obtained from CCSD calculations using the genuine 1Σ u

+

reference orbitals show a proper behavior for large R values, in NaK (like in
the other heteronuclear species) there is no genuine reference orbital basis
available and the usage of the X or a-state references leads to the break-
down of the correct A state description at larger distances. Due to the dete-
rioration of the potential energy curves relatively close to the minimum,
the calculated ωexe were not stable enough and are thus not included in the
table.

In Fig. 4, a comparison of CASSCF, CASPT2 and CCSD potential energy
curves for the B1Πu state of Na2 with the corresponding curves for the B1Π
state of NaLi is given. The figure clearly shows that for the B state of Na2
the CASPT2 and the related CASSCF curves show shallow energy maxima in
the distance region 6.0 ≤ R ≤ 7.0 Å in good agreement with the experimen-
tal finding mentioned above. In contrast to the B state of NaLi, the CASSCF
curve has a shoulder at about R = 4.1 Å whereas CASPT2 (and actually also
CCSD) run smoothly through this region even if the curves seem to be
misformed.

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

972 Neogrády, Szalay, Kraemer, Urban:

FIG. 4
Na2 and NaLi potential energy curves for the B1Π singlet excited state. Comparison of CASSCF,
CASPT2 and CCSD curves



More quantitative characterizations of the performance of the CCSD
approach in describing the heteronuclear properties can be found in the tables.
Looking at the energetics, dissociation and excitation energies in Tables I
and II, it is seen that the CCSD results are generally low compared with ex-
periment whereas CCSD(T) for the ground states and CASPT2 are mostly in
better agreement. It was mentioned before that in the case of dissociation
energies the missing triples are mostly responsible for the discrepancy. Re-
sults for basic spectroscopic properties collected in Tables IV–VI show that
they follow the same trends like those for Na2. Equilibrium bond distances
tend to be too long compared with the values derived from experiment
which was already previously attributed to basis set deficiencies (overcom-
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TABLE IV
Equilibrium bond distance Re (Å), harmonic vibrational frequency ωe and anharmonicity
ωexe (cm–1) of NaLi in its ground state and the lowest excited singlet states

State Ref.a CCSD CCSD(T) CASSCF CASPT2 Experiment

Re

X1Σ+ X 2.911 2.909 2.949 2.909 2.81b, 2.885c, (2.868)d

A1Σ+ X 3.401 – – 3.406 (3.349)d, (3.381)e

a 3.398 – – –

B1Π B 3.266 – – 3.296 3.20b, (3.228)d

ωe

X1Σ+ X 253 252 247 253 256.8b, 257.0c, (250)f

A1Σ+ X 185.6 – – 184.4 (190)f

a 186.3 – – –

B1Π B 175 – – 165.4 (130)f

ωexe

X1Σ+ X 1.56 1.62 1.61 1.53 1.612b, (1.5)g

A1Σ+ X 0.84 – – 0.84 (1.1)g

a 0.85 – – –

B1Πh B – – – – (~1)g

a See footnote a in Table I. b Ref.58 c Ref.59 d Theoretical values in parentheses from
ref.60 e Theoretical value in parentheses from ref.61 f Theoretical values in parentheses from
ref.60 g Theoretical values in parentheses from ref.60 h Values were not stable enough.



pensation in the Boys–Bernardi BSSE correction procedure). Harmonic fre-
quencies, on the other hand, are mostly in rather good agreement with ref-
erence results.

CONCLUSIONS

We present in this contribution some applications of our newly imple-
mented CCSD method based on a two-determinant reference (TD-CCSD)
which is appropriate to describe open-shell excited singlet states. Both, a
complete or incomplete active space can be used in our approach. Another
practical advantage of our method is that the computer time needed for cal-
culating excited singlets with the two-determinant reference is essentially
the same as that for a corresponding single reference calculation.
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TABLE V
Equilibrium bond distance Re (Å), harmonic vibrational frequency ωe and anharmonicity
ωexe (cm–1) of NaK in its ground state and the lowest excited singlet states

State Ref.a CCSD CCSD(T) CASSCF CASPT2 Experiment

Re

X1Σ+ X 3.539 3.538 3.669 3.552 3.589b, 3.498c, 3.49d

A1Σ+ X 4.273 – 4.445 4.274 4.17d

a 4.282 – – –

B1Π B 4.121 – 4.594 4.237 4.04d, 4.0134e

ωe

X1Σ+ X 122.4 120.4 115.3 120.4 124.1b,d, 124f

A1Σ+ X 78.7 – 72.4 82 79.8b, 81.3d

a 78.5 – – –

B1Π B 66.0 – 44.4 62.7 72.6b, 71.463e

ωexe

X1Σ+ X 0.43 0.47 0.44 0.46 0.511b

A1Σ+ X 0.25 – 0.22 0.27 0.087b

a 0.26 – – –

B1Π B 1.06 – 0.50 –g 1.475b, 1.151e

a See footnote a in Table I. b Experimental data from NIST (ref.54). In this reference 1Π state
is called C-state. c Ref.62 d Ref.63 e Ref.52, see also ref.18 f Ref.64 g Value was not stable
enough.



In order to test the performance of the TD-CCSD approach we use the
method of calculation of spectroscopic properties for the model diatomic
molecules Na2 in the X1Σ g

+ ground state and the two singlet mono-excited
states, A1Σ u

+ and B1Πu. Analogous calculations are made for the X1Σ+, A1Σ+

and B1Π states of the NaLi, NaK, and NaRb heteronuclear molecules. The
influence of different selections of orbitals for the construction of the the
model space serving as reference for TD-CCSD is carefully analysed. For the
A1Σ+ state of the heteronuclear species the reference can be created from
orbitals obtained for the ground state or from the corresponding one-
determinant solution for the analogous triplet state. Dissociation energies
differ in this case typically by less than 0.02 eV and excitation energies
from the ground X1Σ+ to the A1Σ+ state by about 50 cm–1 (NaLi) up to 200 cm–1

(NaK) depending on the selected reference. Theoretical CCSD dissociation
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TABLE VI
Equilibrium bond distance Re (Å), harmonic vibrational frequency ωe and anharmonicity
ωexe (cm–1) of NaRb in its ground state and the lowest excited singlet states

State Ref.a CCSD CCSD(T) CASSCF CASPT2 Experiment

Re

X1Σ+ X 3.693 3.691 3.700 3.56c, 3.644d

A1Σ+ X 4.502 – 4.514 (4.406)e

a 4.493 – – –

B1Π B 4.293 – 4.406 4.177f

ωe

X1Σ+ X 105.4 103.4 101 106.6b, 107c

A1Σ+ X 64.8 – 63.7 (66.0)g

a 66.5 – – –

B1Π B 56.4 – 54 61.2f

ωexe

X1Σ+ X 0.33 0.36 0.2 0.455b

A1Σ+ X 0.15 – 0.14 –

a 0.05 – – –

B1Π B 0.83 – –h –

a See footnote a in Table I. b Experimental data from NIST (ref.54). c Ref.65 d Ref.17 e Theoreti-
cal value in parentheses from ref.19 f Ref.53 g Theoretical value in parentheses from ref.19

h Value was not stable enough.



energies for excited singlet states deviate from available experimental
values by amounts ranging from 0.006 eV for the A1Σ+ state of Na2 up to
0.04 eV for the B1Π state of NaRb. For excitation energies the agreement
between theory and experimental data is typically within 30 cm–1 (for the
X1Σ+ – B1Π excitation in NaLi) up to 230 cm–1 for the same excitation pro-
cess in NaRb. Theoretical CCSD bond distances Re (Å) for excited singlet
states deviate from available experimental values by 0.001 up to 0.1 Å (X1Σ+

and B1Π states of NaLi and the B1Π state of NaRb). Experimental results,
however, are not especially accurate. Harmonic vibrational frequencies ωe
deviate from experimental values typically by less than 2–3 cm–1. It is diffi-
cult to assess the accuracy of the anharmonicity. Apart from the fact that
our potential energy curves are deteriorated in some cases by quasi-
degeneracy problems at larger distances, another source of inaccuracies is
the fitting procedure adjusting the free parameters of an appropriate poten-
tial expression to the calculated energy points. On the other hand, experi-
mental reference data are also obviously affected by inaccuracies arising
from the process of converting the direct measurements into physical con-
stants.

In general, the reasonably good agreement of the theoretical results ob-
tained here using the TD-CCSD approach with the experimental reference
data appears to be promising even if the possibility of some error compen-
sation cannot be excluded on this performance level. More accurate results
would probably need triples to be included in the description although our
calculations seem to indicate that triples are less important for excited
states compared with the ground state.
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